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ABSTRACT

Several functional forms of cloud particle size distributions (PSDs) have been used in numerical modeling

and remote sensing retrieval studies of clouds and precipitation, including exponential, gamma, lognormal,

and Weibull distributions. However, there is no satisfying theoretical explanation as to why certain distri-

bution forms preferentially occur instead of others. Intuitively, the analytical form of a PSD can be derived by

directly solving the general dynamic equation, but no analytical solutions have been found yet. Instead of a

process-level approach, the use of the principle of maximum entropy (MaxEnt) for determining the theo-

retical form of PSDs from the perspective of system is examined here. MaxEnt theory states that the prob-

ability density function with the largest information entropy among a group satisfying the given properties of

the variable should be chosen. Here, the issue of variability under coordinate transformations that arises using

the Gibbs–Shannon definition of entropy is identified, and the use of the concept of relative entropy to avoid

these problems is discussed. Focusing on cloud physics, the four-parameter generalized gamma distribution is

proposed as the analytical form of a PSD using the principle of maximum (relative) entropy with assumptions

on power-law relations among state variables, scale invariance, and a further constraint on the expectation of

one state variable (e.g., bulk water mass). The four-parameter generalized gamma distribution is very flexible

to accommodate various type of constraints that could be assumed for cloud PSDs.

1. Introduction

Various functional forms of cloud particle size distri-

butions (PSDs), such as exponential (Marshall and

Palmer 1948), gamma (e.g., Borovikov et al. 1963;

Ulbrich 1983), lognormal (e.g., Feingold and Levin 1986;

Tian et al. 2010), and Weibull distributions (e.g., Zhang

and Zheng 1994; Liu et al. 1995), have been used in

numerical models and remote sensing retrieval algo-

rithms. These functional forms of the cloud PSDs and

the choice of free parameters characterizing the distri-

bution have been typically determined based on what

provides the best match to in situ observations. The

scaling technique, as an alternative approach to describe

cloud PSDs based on observational data, has been used

recently to derive parameters characterizing a PSD by

assuming a limited number of degrees of freedom and a

‘‘universal distribution’’ without stating its exact func-

tional form (e.g., Testud et al. 2001; Lee et al. 2004).

Without considering the number of degrees of freedom

needed to characterize a PSD, determining the func-

tional form of the universal distribution used in the

scaling approach is a challenging question. Although

many different functional forms of cloud PSDs have

been proposed, no study has yet provided an adequate

theoretical explanation as to why a certain functional

form is preferred over another. Therefore, the choice of

functional form varies from study to study, complicating

the comparison of PSD parameters derived from dif-

ferent field campaigns and frommodel parameterization

schemes. It is not known if the choice of functional form

should vary with environmental conditions.

A theoretical way to find an analytical form of a PSD

is to solve the general dynamic equation describing the

particle system, given by
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where n(y, t) is the number distribution function for

particles with volume y at time t; K(y, u) and L(u, y) are

the collection kernel and breakup kernel for particles

with volumes y and u; SC(y, t) is the source term; and

SK(y, t) is the sink term. All variables used in this paper

are also defined in the appendix. This form of the

equation can be used for several different types of par-

ticles in a mixed particle system, such as ice particles

with varying shapes and liquid particles. For the particle

system of a single species (e.g., purely liquid clouds), one

equation is sufficient. Unfortunately, Eq. (1) can only be

solved analytically for constant, additive, or multiplica-

tive kernels. Therefore, even for the simplest case of

liquid clouds without nucleation, sedimentation, and

breakup, no analytic form for a cloud PSD has been

found when a geometric collection kernel is used (Drake

1972). When more complex processes acting in ice or

mixed-phase clouds are considered (e.g., sublimation,

aggregation, melting, riming, and deposition), the equa-

tion is evenmore difficult to solve, and an analytic solution

cannot be contemplated at this time. Because analytic

solutions have not been possible, numerical methods

have been used to determine PSDs in bin-resolved

models. However, the derived PSDs are very sensitive

to even the representation of processes in liquid-phase

clouds, such as the choice of raindrop breakup kernel

(Srivastava 1971, 1982; List and McFarquhar 1990; Hu

and Srivastava 1995;McFarquhar 2004), with the collision-

induced breakup parameterization determining the

shape of modeled PSD. There are sensitivities to the

representation of evenmore processes for ice or mixed-

phase clouds.

A statistical theory is another viable way to determine

the form of PSDs. Here, the mass or size of every par-

ticle is considered as a random variable acting under the

influence of stochastic processes from a statistical per-

spective, even though each individual particle follows

physical laws. An example is the use of statistical me-

chanics in the field of the thermodynamics where every

molecule follows physical laws, but the collections of

molecules are described by statistical properties (e.g.,

the temperature represents the average kinetic energy

of molecules). One promising statistical theory for de-

termining cloud PSDs is the principle of maximum en-

tropy (MaxEnt; Jaynes 1957a,b). MaxEnt theory states

that for a group of probability density functions (PDFs)

that satisfy given properties of the variable, the PDFwith

largest information entropy for this variable should be

chosen. Thus, a uniform distribution function (most un-

certain) is selected if no other properties are specified.

But if the mean of the distribution is prescribed, the ex-

ponential distribution is the most probable distribution,

following the same logic as used to derive the Maxwell–

Boltzmann distribution in statistical mechanics. If both

the mean and variance are prescribed, the most probable

distribution is the normal distribution. The concept of

MaxEnt has been used widely in physics (e.g., Rose et al.

1990; Antoniazzi et al. 2007), mechanical engineering

(e.g., Sellens and Brzustowski 1985; Li et al. 1991; Berger

et al. 1996), image processing (e.g., Wernecke and

D’Addario 1977; Skilling and Bryan 1984), machine

learning (e.g., Rosenfeld 1996; Berger et al. 1996), ecol-

ogy (e.g., Phillips et al. 2004, 2006; Banavar et al. 2010),

economics (e.g., Cozzolino and Zahner 1973; Buchen and

Kelly 1996), and even in atmospheric sciences for repre-

senting cloud microphysics (e.g., Zhang and Zheng 1994;

Liu et al. 1995; Yano et al. 2016) and turbulent flows (e.g.,

Majda and Wang 2006; Craig and Cohen 2006; Verkley

and Lynch 2009; Verkley 2011; Verkley et al. 2016). Its

use in the study of spray PSDs in mechanical and mate-

rial engineering is closely related to its use in the study of

cloud PSDs. Li and Tankin (1987), Dumouchel (2006),

and Lecompte andDumouchel (2008) employedMaxEnt

to derive analytical forms of spray PSDs, and Déchelette
et al. (2011) have a comprehensive review on the appli-

cation of MaxEnt to spray PSDs. Some applications

of statistical mechanics may not state the principle of

MaxEnt explicitly, but similar methods have been em-

ployed by Griffith (1943) to explain the particle size dis-

tribution in a comminuted system and by Lienhard (1964)

to explain the unit hydrograph in hydrology. Thus, they

are considered the same approach.

The problem of determining PSDs in cloud physics

is very similar to the problems in these other fields.

For numerical models simulating clouds with bulk mi-

crophysics schemes, only a number of moments of

the PSD are predicted. For example, many schemes

prognose the mass and number concentration. Other

moments of a PSD are then calculated using the assumed

formof the PSD and assumptions about various constants

describing these distribution forms (Thompson et al.

2004; Morrison et al. 2005; Seifert and Beheng 2006;
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Morrison and Milbrandt 2015). These other moments in-

clude radar reflectivity and extinction. Thus, for developing

parameterizations of cloud microphysics, there are some

constraints on the properties of PSDs, exactly the type of

scenariowhereMaxEnt can be used.UsingMaxEnt, Zhang

and Zheng (1994) and Liu et al. (1995) introduced the

Weibull distribution as the analytical form of PSDs assum-

ing constraints on the surface area and mass, respectively.

Their derived PSD forms differ on the parameters charac-

terizing the Weibull distribution due to their different as-

sumptions. Yano et al. (2016) extended the assumptions on

the PSDs to include constraints on the mean maximum di-

mension and sedimentation flux of droplets, and they ex-

amined the impact of these assumptions using idealized

simulations, laboratory, and observational datasets. All

prior studies applying MaxEnt to cloud PSDs used the

Gibbs–Shannon form of entropy. However, the Gibbs–

Shannon entropy is not invariant under coordinate trans-

formation, and therefore different PSD forms can be

derived using the same assumptions, as discussed in detail in

section 3. To solve these problems, a different formalism of

entropy is needed, as Jaynes (1963, 1968) noted.

This paper applies the form of (relative) entropy pro-

posed by Jaynes (1963, 1968) to cloud PSDs. The problem

of Gibbs–Shannon entropy is discussed in section 3

after a brief review of MaxEnt in section 2. Based on the

form of (relative) entropy and several plausible assump-

tions about the cloud system, the four-parameter gener-

alized gamma distribution is proposed as the most

reasonable analytical form of cloud PSDs in section 4.

The properties of the generalized gamma distribution are

summarized in section 5. The applications of the four-

parameter generalized gamma distribution to in situ

observed liquid and ice cloud PSDs are investigated in

section 6. The principle findings of the study and di-

rections for future work are summarized in section 7.

2. MaxEnt and its rationale for cloud physics

MaxEnt theory was first proposed by Jaynes (1957a,b)

to explain the classical Maxwell–Boltzmann distribution.

The same principle has also been applied to Fermi–Dirac

statistics and Bose–Einstein statistics and nonequilibrium

statistical mechanics (Jaynes 1963, 1968; Dougherty 1994;

Banavar et al. 2010). In statisticalmechanics, it is assumed

that if there areNi particles in the ith energy state Ei, the

total energy of the system E is given by

E5 �
n

i51

N
i
E

i
, (2)

where there are n total energy states with the total

number of particles in the ensemble N, given by the

summation of all particles in each energy state

expressed by

N5 �
n

i51

N
i
. (3)

The number of microscopic configurations in which the

N particles can be distributed over the n different energy

states W is given by

W5
N!

N
1
!N

2
! � � �N

n
!
. (4)

Boltzmann defined the entropy as SB 5 kB ln(W), where

kB is the Boltzmann constant (Pathria and Beale 2011).

Greater W means a larger number of microscopic con-

figurations of the N particles distributed over the n dif-

ferent energy states. SB monotonically increases withW

and is a measure of disorder: the greater the number of

microscopic configurations in the system, the more un-

certain the system can be. Using Sterling’s formula

ln(n!)5 n ln(n)2 n1O[ln(n)] , (5)

Boltzmann’s entropy becomes

S
B
5 k

B
ln(W)5 k

B

�
ln(N!)2 �

n

i51

ln(N
i
!)

�

’2k
B
N�

n

i51

N
i

N
ln

�
N

i

N

�
52k

B
N�

n

i51

p
i
ln(p

i
)5NS ,

(6)

where pi 5Ni/N is the probability of particles in the

ith energy state, and S52kB�n

i51pi ln(pi) is Gibbs’ form

of entropy, which is the same form as Shannon’s

information entropy, except for the inclusion of the

Boltzmann constant (Shannon 1948). Assuming that

there is a solution, denoted by Ni (or pi), that maximizes

W and therefore S, it can be proven using Eq. (6) and the

definition of Boltzmann entropy that

W
max

W
5 e(N/kB)(Smax2S) . (7)

Since N is a very large number, and kB is a very small

number in the context of statistical mechanics,Wmax will

be much larger than any otherW achieved with otherNi,

indicating any other pi that deviates from pi has signifi-

cantly fewer microscopic configurations. For example,

for a mole of gas, there are NA (Avogadro constant,

6.023 1023 mol21) particles, and the large ratio ofWmax

to otherW rules out the possibility of other distributions.

This is an important property of entropy.
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The derivation of Ni or pi is an optimization problem,

arg maxNi
ln(W) subject to Eqs. (2) and (3), that can be

derived using the method of Lagrange multipliers,

where

d ln(W)2 l
0

�
�
n

i51

N
i
2N

�
2 l

1

�
�
n

i51

N
i
E

i
2E

�
5 0,

(8)

where l0 and l1 are the Lagrange multipliers. By using

Stirling’s approximation, Eq. (8) becomes

�
n

i5 1

2 ln(N
i
)dN

i
2 l

0

�
�
n

i51

dN
i

�
2 l

1

�
�
n

i51

dN
i
E

i

�

5 �
n

i51

[2 ln(N
i
)2 l

0
2 l

1
E

i
]dN

i
5 0 , (9)

so that

p
i
5

N
i

N
5Ce2l1Ei , where C5C

0
e2l0 , (10)

which is the Maxwell–Boltzmann distribution (Pathria

and Beale 2011). The Lagrange multipliers l0 and l1 can

be obtained by substituting Ni in Eqs. (2) and (3).

Based on the above arguments, Jaynes (1957a,b) argued

that for a group of PDFs that satisfy the given properties

of a variable x, the PDF with largest information entropy

(Shannon 1948) should characterize the variable, with

statistical mechanics being just one example of this prin-

ciple applied to an ideal gas. The methodology can be

generalized using a continuous distribution to characterize

the variable

argmax
P(x)

2

ð‘
0

P(x) lnP(x) dx

subject to (nc1 1) constraints:

ð‘
0

f
k
(x)P(x) dx5F

k
,

(11)

where P(x) is the probability that state variable x will

occur, and the nc 1 1 constraints are expressed in the

form of fixed expectation of fk(x) with k5 0, 1, 2. . . , nc.

For k 5 0, f0(x) 5 1 and F0 5 1 are chosen as the nor-

malization conditions for the PDF. Since the zeroth

constraint is valid for every PDF, only nc other con-

straints need to be given explicitly. Therefore, the

number of given constraints is denoted as nc. The value

of nc is determined by the knowledge of the system that

is being considered and can vary according to the be-

havior of the particular system that is beingmodeled. To

get the maximum of S52
Ð ‘
0
P(x) lnP(x) dx with these

constraints, the method of Lagrange multipliers can be

applied as before with the discrete sums so that the

Lagrange function L(x, l1, l2, . . . , lk) is expressed by

L(x,l
1
,l

2
, . . . , l

k
)[2

ð‘
0

P(x) lnP(x)

2 �
nc

k50

l
k

� ð‘
0

f
k
(x)P(x) dx2F

k

�
,

(12)

where k5 0, 1, 2, . . . , nc. Then, the general result can be

solved so that

P(x)5
1

Z(l
1
, l

2
, . . . , l

m
)
exp

�
2 �

nc

k50

l
k
f
k
(x)

�
, (13)

where the partition function Z(l1, l2, . . . , ln) 5Ð
exp

�
2�nc

k50lkfk(x)
�
dxlkfk(x).

Following this technique, the exponential distribution

can be derived as the maximum entropy distribution if

only the mean of the variable is known. The Weibull

distribution can be further derived as the maximum

entropy distribution if themean of the power function of

the variable is known. If both themean and variance of a

variable are known, the normal distribution will be the

maximum entropy distribution. Similarly, the lognormal

distribution will be derived if the mean and variance of

the logarithm of the variable are known. Kapur (1989)

describes commonly used PDFs and their constraints.

Statistical mechanics can be used to define the prop-

erties of a cloud just as it is used to define the properties

of an ideal gas. Just as in thermodynamics, where there

are variables describing the microscopic and macro-

scopic states of the ideal gas, there are variables de-

scribing the microscopic and macroscopic properties of

clouds as discussed previously, and the use of random

variables is convenient so that statistical mechanics can

be applied. The macroscopic states are mainly defined

by the total number of cloud particles, the cumulative

extinction (projected area) of all cloud particles, the

bulk liquid or ice water content of all particles in a dis-

tribution, and other bulk microphysical properties. The

microscopic states are described by the size, area, and

mass of the individual hydrometeors. This is analogous

to the case of an ideal gas, where even though there are

numerous realizations of velocity for each individual gas

molecule, the Maxwell–Boltzmann distribution, which

has the largest entropy, has the largest number of mi-

croscopic configurations of molecule speeds and hence

characterizes the distribution. Similarly, for clouds, the

PDF with the maximum entropy also has the largest

number of microscopic configurations of cloud particles

distributed over different sizes. A key question in the

application of statistical mechanics to distributions of
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cloud particles is how many particles are needed to make

the method robust because there are inevitably fewer

cloud particles than gas molecules. If it is assumed that the

total number concentration isNt, then the total number of

cloud particles in a sample volume V is N 5 NtV. The

volume should be sufficiently large to make N large, but

at the same time not so large to exceed the typical volume

of a cloud or a scale where there is a lot of horizontal or

vertical inhomogeneity. Here, a unit cloud volume (V) of

100m 3 100m 3 10m 5 105m3 is proposed as large

enough. Assuming a concentration ofNt’ 100cm23, then

N 5 NtV 5 1013 should be big enough to make the deri-

vation solid. This volume is also small enough, compared

to typical model grid volume or radar sample volumes.

In cloud physics, the number distribution function

is expressed as N(D), which can be normalized by Nt 5Ð ‘
0
N(D) dD to define the number distribution probability

density function expressed by

P(D)5
N(D)

N
t

. (14)

Thus, the MaxEnt approach can be applied in the study

of cloud PSDs, and its use in cloud physics has been

discussed by Zhang and Zheng (1994), Liu et al. (1995),

and Yano et al. (2016). However, there are problems

directly applying MaxEnt to cloud PSDs, as discussed in

section 3. Previous studies chose the particle maximum

dimension (D) or particle mass (m) as the state variable

x, with all assuming two constraints: 1) the constraint of

total particle number concentration and 2) a constraint

of mean maximum dimension (Yano et al. 2016), total

surface area (Zhang and Zheng 1994), total bulk water

content (Liu et al. 1995), or mass flux (Yano et al. 2016).

The constraints apply to bulk properties, which are in-

tegrations of particle properties over size. The derived

PSD forms maximizing the entropy are then special

cases of Eq. (13), with nc 5 1, expressed by

P(x)5
1

Z(l)
exp[2l

1
f
1
(x)] , (15)

where x could be D or m, and f1(x) could be D, A, m, or

mn (n is the fall speed of a particle). The f1(x) is typi-

cally written as a power-law function of x. An example

for f1(x) is aD
b, where x is D. Note that the PDF as a

function of D and the PDF as a function of any other

variable x can be converted, so that the number distri-

bution function can be expressed:

N(D)5N
t
P(D)5N

t
P(x)

dx

dD
5

N
t

Z(l)
exp[2l

1
f
1
(x)]

dx

dD
.

(16)

Usually, any other state variable x and the particle max-

imum dimension D are assumed to be related through

a power law (e.g., x 5 aDb), so that Eq. (16) can be

rewritten as

N(D)5
N

t
ab

Z(l)
Db21 exp[2l

1
f
1
(aDb)] . (17)

3. Problems using Gibbs–Shannon entropy and the
concept of relative entropy

Equation (17) is a general solution for the functional

formof cloudPSDsmaximizing the entropy content as long

as one constraint is given explicitly. However, it can be

proven that a different PSD form can be derived using the

same constraint when using the Gibbs–Shannon entropy.

For example, below, it is shown that the same constraints

used in Liu et al. (1995) can be employed to derive a dif-

ferent PSD than the one derived in Liu et al. (1995). It

should be noted that all the forms derived in Zhang and

Zheng (1994) and Yano et al. (2016) suffer the same

problem. Assuming that the total bulk number concentra-

tion Nt and total bulk water mass content (TWC) are

constraints, and usingmassm as the variable characterizing

particles, Liu et al. (1995) showed that the MaxEnt distri-

bution was given by

N(m)5C
1
exp(2l

1
m) , (18)

where C1 5 N2
t /TWC and l1 5 Nt/TWC are the distri-

bution parameters. This distribution can be rewritten in

terms ofD using an assumed mass–dimensional relation

m 5 aDb as

N(D)5C
1
Db21 exp(2l

1
Db) , (19)

where C1 5abN2
t /TWC and l1 5aNt/TWC are the

distribution parameters.

However, if the PDF is characterized in terms of D

instead, and the same two constraints are applied, as

expressed by

ð‘
0

N(D) dD5

ð‘
0

N
t
P(D) dD5N

t
, (20)

ð‘
0

aDbN(D) dD5

ð‘
0

aDbN
t
P(D) dD5TWC, (21)

the MaxEnt distribution becomes

N(D)5 ~C
1
exp(2~l

1
Db) , (22)

where ~C1 5 [Ntb(aNt/bTWC)1/b]/G(1/b) andl5 aNt/bTWC

are the distribution parameters. By comparing Eqs. (19)

AUGUST 2018 WU AND MCFARQUHAR 2805

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/75/8/2801/3675654/jas-d-17-0164_1.pdf by N
O

AA C
entral Library user on 11 August 2020



and (22), it is found that two different analytical forms of

PSDs are derived using the same assumption. In fact, a

different analytical form of the PSD can be derived

whenever the state variable x characterizing the cloud

particles changes. This is because the Gibbs–Shannon en-

tropy is not invariant under the transformation of variables

(Jaynes 1963, 1968). Thus, Jaynes (1963, 1968) proposed

another definition of entropy, typically called relative en-

tropy that makes entropy invariant under variable trans-

formations. The relative entropy is mathematically sound

and physically meaningful, as discussed below.

The definition of relative entropy proposed by Jaynes

(1963, 1968) Sr is expressed by

S
r
52

ð‘
0

P(x) ln
P(x)

I(x)
dx , (23)

where I(x) is called the invariant measure, or a prior

distribution that represents an initial guess of what the

distribution should be. This relative entropy Sr has also

been called Kullback–Leibler divergence, which is a

measure of how a PDF diverges from a prior distribu-

tion. When I(x) is a uniform distribution, the definition

of relative entropy is identical to the Gibbs–Shannon

entropy minus a constant. For systems where coordinate

transforms are important, the uniform distribution is

not a good prior distribution. Therefore, a form that is

invariant under coordinate transforms needs to be used

for the generalized development. It can be shown that

Sr is invariant under coordinate transformation [x / y,

where y 5 g(x)] because

S
r
52

ð‘
0

P0(y) ln
P0(y)
I
0(y)

dy52

ð‘
0

P(x) ln
P(x)

I(x)
dx , (24)

with P0(y) 5 P(x)dx/dy and I0(y) 5 I(x)dx/dy.

To maximize Sr with given constraints, the method of

Lagrange multipliers is again used so that

L[2

ð‘
0

P(x) ln
P(x)

I(x)
2�

nc

k51

l
k

� ð‘
0

f
k
(x)P(x) dx2F

k

�
,

(25)

where k 5 0, 1, 2, . . . , nc, and the maximum (relative)

entropy distribution is solved in the form

P(x)5
1

Z(l
1
, l

2
, . . . , l

nc
)
I(x) exp

�
2 �

nc

k50

l
k
f
k
(x)

�
, (26)

where the new partition function is

Z(l
1
,l

2
, . . . , l

nc
)5

ð‘
0

I(x) exp

�
2 �

nc

k50

l
k
f
k
(x)

�
dx .

4. Application to cloud PSDs

The relative entropy is invariant under coordinate

transformations, and the distribution derived maximiz-

ing this definition of entropy is consistent with the same

constraint regardless of the variable used to characterize

the PDF. However, before the theory can be applied to

any system, the appropriate constraints and invariant

measure I(x) are needed. These can only be obtained

from an understanding of the system studied. To apply

the theory to cloud physics, the first step is to determine

the constraints for a cloud. Yano et al. (2016) used ob-

served and simulated datasets to evaluate constraints of

mean maximum dimension, bulk extinction, bulk water

content, and bulk mass flux. This paper does not exam-

ine the use of different constraints, as did Yano et al.

(2016), but instead focuses on the general application

of the new definition of entropy. Unlike the Gibbs–

Shannon entropy used in previous studies, the choice of

state variable x is not important for Sr, as the invariant

measure I(x) will adjust accordingly. In this study, the

particle maximum dimension (D) is chosen as the state

variable x of the cloud. The number distribution func-

tionN(D), following Eq. (26), can thus be expressed by

N(D)5
N

t

Z(l
1
, l

2
, . . . ,l

nc
)
I(D) exp

�
2�

nc

k50

l
k
f
k
(D)

�
, (27)

where the number of constraints is usually equal or

larger than 1. Equation (27) is the general form ofN(D),

and the number of constraints, as well as the corre-

sponding constraint function fk(D), need to be assumed

to derive a specific form for N(D). For this study, one

constraint is assumed. In future studies, more than one

constraint can be used if the solution using one con-

straint is not well validated against observations. If it is

assumed that there is just one constraint and this con-

straint function can be represented as a power law with

particle maximum dimension [ f1(D) 5 aDb] following

Zhang and Zheng (1994), Liu et al. (1995), and Yano

et al. (2016), Eq. (27) then becomes

N(D)5
N

t

Z(l
1
)
I(D)e2l1aD

b

5
N

t

Z(l
1
)
I(D)e2lDb

, (28)

where l 5 l1a.

The next step applyingMaxEnt theory is to determine

the invariant measure I(D), whichmust be provided by a

knowledge of the underlying physics. Jaynes (1968)

provided guidelines to choose the invariant measure

based on the transformation group, and Jaynes (1973)

showed an example using the transformation group. The

basic idea is that the shape of the invariant measure

should be invariant in two different systems. In particular
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for this case, the shape of the invariant measure should not

change with the volume of cloud studied. Assume two

volumes of the same cloud: cloud A with total volume VA

and cloud B, a subset of the cloud A, with total volume

VB 5 k1VA, k0 , k1 # 1. Hereafter, the properties of

volumeA and volumeB are denoted with the subscriptsA

and B, respectively. Here, k1 cannot be too small since a

large number of particles is needed for the application of

statistical mechanics; hence, k0 is used for a lower bound

instead of 0. Here, k05 0.1 should be large enough, which

will give the number of cloud particles in volumeB around

1012 if volume A is as discussed in section 2.

For volume VA, the total mass is TWC 3 VA. There-

fore, no particles larger than DmaxA are possible, where

aDb
maxA 5TWC 3 VA with a and b the m–D relation

parameters with m 5 aDb, the mass of an individual

cloud particle. Thus, IA(D)5 0 forD.DmaxA. For cloud

A, the prior probability is IA(D) with
Ð DmaxA

0
IA(D) dD5 1.

For cloudB, the volumewill beVB5 k1VA, themaximum

particle size will be DmaxB 5 kDmaxA (k1 5 k1
1/b), and the

prior probability IB(D) satisfies
Ð DmaxB

0
IB(D) dD5 1. A new-

scaled dimensionless variable x 5 D/DmaxA is defined to

scale IA(D) into the range [0, 1] so that

ðDmaxA

0

I
A
(D) dD5

ð1
0

I
A
(xD

maxA
) d(xD

maxA
)

5

ð1
0

D
maxA

I
A
(xD

maxA
) dx

5

ð1
0

f
A
(x) dx5 1, (29)

where fA(x)5DmaxAIA(xDmaxA) and, similarly, fB(y)5
DmaxBIB(yDmaxB), where y5D/DmaxB. Because of scale

invariance, the scaled PDFs fA(x) and fB(y) over the

same range of [0, 1] should be the same, meaning that

f
A
(x)5 f

B
(x)

or D
maxA

I
A
(xD

maxA
)5D

maxB
I
B
(xD

maxB
)

or I
A
(D)5 kI

B
(kD) . (30)

This is the scale invariance that the cloud system must

satisfy in order for two different volumes to have the

same shape of invariant measure. Following the formula

for conditional probability, for any D that is within the

range of [0, kDmaxA], it can be shown that

I
A
(D)5 I

B
(D)

ðkDmaxA

0

I
A
(u) du . (31)

Equation (31) is the standard conditional probability

formula and will hold whether or not any transformation

invariance is assumed.

Combining the invariance requirement Eq. (30) and

the conditional probability relation Eq. (31), it is de-

termined that

kI
A
(kD)5 I

A
(D)

ðkDmaxA

0

I
A
(u) du . (32)

Differentiating Eq. (32) with respect to k gives another

form of Eq. (32):

I
A
(kD)1 k

›I
A
(kD)

›D
D5 I

A
(D)I

A
(kD

maxA
)D

maxA
. (33)

This equation is still hard to solve since it involves both

cloud A and cloud B and, therefore, one parameter k.

Remember that cloudB is a subset of cloudA. By setting

k 5 1 to make cloud A and cloud B the same, the

equation for one cloud (cloud A is chosen here, but it is

the same to choose cloud B to solve first) yields

IA(D)1
›I

A
(D)

›D
D5 I

A
(D)I

A
(D

maxA
)D

maxA

/
›I

A
(D)

›D
D5 [I

A
(D

maxA
)D

maxA
2 1]I

A
(D) . (34)

Solving the differential equation Eq. (34), it can be

shown that the most general solution is

I
A
(D)5

m1 1

Dm11
maxA

Dm , (35)

where m, defined as IA(DmaxA)DmaxA 2 1, is a constant

in the range of 21 , m , ‘. The constant m cannot be

further determined by scale invariance. Using Eq. (30),

the invariant measure of cloud B is

I
B
(D)5

m1 1

(kD
maxA

)m11
Dm 5

m1 1

Dm11
maxB

Dm . (36)

The form of invariant measure provided by Eq. (35)

[or Eq. (36)] satisfies translational, rotational, and scale

transformations, typical transformations between co-

ordinate systems as suggested by Jaynes (1968). In this

case, PSDs are described with a single dimension in a

space related to particle maximum dimension, so no

rotational transformation exists. Since no spatial vari-

ables are involved, the PDF does not change when the

coordinate system is translated. Scale transformation is

the last transformation to be satisfied. For two co-

ordinate systems R and S, the length relates by k with

DR 5 kDS, the invariant measure for R is IR(DR) withÐ DmaxR

0
IR(DR) dDR 5 1, and the invariant measure for S is

IS(DS) with
Ð DmaxS

0
IS(DS) dDS 5 1. Since it is the same

cloud observed, the relation IR(DR) dDR 5 IS(DS) dDS
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holds, which means kIR(kDS)5 IS(DS). Equation (35)

clearly satisfies this relation. So far, the invariant mea-

sure provided by Eq. (35) satisfies all the Abelian group

transformations proposed by Jaynes (1968).

If Eq. (35) is assumed to represent the invariant

measure, combined with Eq. (28), the final N(D) is the

four-parameter generalized (or modified) gamma dis-

tribution, given by

N(D)5N
0
Dme2lDb

, (37)

where N0 5 NtC/Z(l1).

It should be noted that the derived PSD forms from

Zhang and Zheng (1994), Liu et al. (1995), and Yano

et al. (2016) are all special cases of Eq. (37), so that this

study is consistent with, but more general than, previous

studies. It is also clear now why the two approaches to

derive the PSD form in section 3 generate different re-

sults. Equations (19) and (22) differ by Dm, which is

the invariant measure. The first approach assumed a

uniform-invariant measure over particle mass, and the

second assumed a uniform-invariant measure over par-

ticle size, and dm/dD 5 abDb21 is the difference.

5. Properties of generalized gamma distribution

The properties of the generalized gamma distribution are

summarized in this section. The generalized (or modified)

gammadistribution is a general formof aPSD,which canbe

simplified to an exponential, gamma, or Weibull distribu-

tion in special cases. To the authors’ knowledge, the gen-

eralized gammadistributionwas first proposed byAmoroso

(1925) to study income distribution and later independently

proposed by Nukiyama and Tanasawa (1939) for fitting the

size distribution of sprays particles in mechanical and ma-

terial engineering. Stacy (1962) studied the mathematical

properties of the generalized gamma distribution, and the

properties relevant to cloud PSDs are summarized here.

The cumulative distribution function for the generalized

(modified) gamma distribution in the form of Eq. (37) is

F(D;N
0
,m, l, b)5

N
0

blG
m1 1

b

� � g

�
m1 1

b
, lDb

�
, (38)

where g(s, x)5
Ð x
0
ts21e2t dt is the lower incomplete

gamma function. The nth moment can be calculated as

M
n
5E(Dn)5

N
0

bl(m111n)/b11
G

�
m1 11n

b

�
. (39)

For any variable x that is related to D through a power

law (e.g., x 5 cDd), it can also be represented by a gener-

alized gamma distribution with the form

N(x)5
N

0

c(m11)/dd
x(m11)=d21 e2(l=cb/d)(xb/d) . (40)

One main benefit of the four-parameter generalized

gamma distribution is that it is invariant under co-

ordinate transformations when characterizing a PSD.

The same form applies to all power-law variables, such

as particle maximum dimension, area, and mass. The

lognormal distribution also has this property, and this is

one of the reasons Feingold and Levin (1986) recom-

mended the lognormal distribution for PSDs. This

property is not shared by the exponential distribution,

gamma distribution, or Weibull distribution. For ex-

ample, Seifert and Beheng (2006) assumed the com-

monly used three-parameter gamma distribution over

mass, which will turn into a four-parameter generalized

gamma distribution over particle size. A second benefit

is that the generalized gamma distribution can also

simplify to a gamma distribution, Weibull distribution,

or even exponential distribution under certain cir-

cumstances. Third, the physical meaning of distribution

parameters is clearer than parameters used in some

empirical distribution functions used in previous stud-

ies. Because of the properties mentioned above, Maur

(2001) and Petty and Huang (2011) also proposed the

use of generalized (or modified) gamma distribution

without stating the underlying physical basis.

6. Testing with in situ observed liquid and ice PSDs

In this section, in situ observed PSDs are fit to

different analytical forms, including the gamma,

Weibull, lognormal, and generalized gamma distri-

butions. The fitting in this section is used to test the

application of four-parameter generalized gamma

distribution in real clouds.

An in situ dataset collected by a two-dimensional

cloud probe (2DC) and high sample volume spec-

trometer (HVPS) during the Midlatitude Continental

Convective Clouds Experiment (MC3E; Jensen et al.

2016) is used for the fitting.Wu andMcFarquhar (2016)

describe how the data were collected and how the

binary data were processed to generate cloud PSDs.

Two different distributions were used in the analysis:

a 1-min time period in liquid clouds and another

1-min period in ice clouds. The particle images were

all manually checked to make sure no mixed-phase

time periods existed in these two time periods. Liq-

uid PSDs measured between 1320:00 and 1320:59 UTC

at a temperature of around 48C are averaged, and

the best fits to the different analytical functions listed

in the legend of Fig. 1 were performed. Following

McFarquhar et al. (2015), the fitting technique
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minimized the x2 difference between the fit and ob-

served moments of N(D), defined by

x2 5�
nm

i51

0
B@M

fit,i
2M

obs,iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

fit,i
M

obs,i

q
1
CA

2

, (41)

whereMobs,i is the ith moment of the observed PSD, and

Mfit,i is the ith moment of the fit PSD calculated using

the assumed PSD form. Here the zeroth, third, and sixth

moments corresponding to total number concentration,

bulk liquid water content, and radar reflectivity were

used in the fitting procedure to determine the parame-

ters describing the gamma, Weibull, and lognormal

distributions. To determine the parameters of the gen-

eralized gamma distribution, the first moment, repre-

senting the mean particle size, was also used because

four moments are required to describe the four param-

eters of the generalized gamma distribution. All fit

functions had x2 # 0.001 in Eq. (41), showing all fits

provide good agreement between fit and measured

moments. Further, the fit gamma, Weibull, and gener-

alized gamma distributions all appear similar to the

observed PSD, while the lognormal fit seems to deviate

further from the observed PSDs. The fit generalized

gamma distribution has a b parameter very close to

1 (0.99), so the fit curve is very close to the gamma dis-

tribution. This implies that the mean maximum di-

mension is the constraint for the liquid clouds in this

time period.

Fits to the PSDmeasured in ice clouds from 1555:00 to

1555:59UTC at a temperature of around2108C from the

same flight were also conducted with the zeroth, sec-

ond, and fourth moments used to determine the fit

parameters. For ice clouds, these approximately cor-

respond to the total number concentration, bulk ice

water content, and radar reflectivity, respectively.

Similarly, an additional moment, the first moment,

was used to find the generalized gamma distribution fit

parameters. Figure 2 shows the results of the fits that

FIG. 1. Sample in situ liquid PSDN(D) as function ofD (black) and fitted for gamma distribution (red),Weibull distribution

(blue), lognormal distribution (cyan), and generalized gamma distribution (purple). The red curve is right under the purple

curve. The fitted parameters are listed in the legend.
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were performed. The b parameter in the generalized

gamma distribution is 0.39, and the fit curve is closer to

the observed PSDs, compared to the gamma distri-

bution and Weibull distribution.

7. Conclusions and discussion

Several analytical forms of cloud PSDs, such as ex-

ponential and gamma distribution functions, have been

assumed in numerical models and remote sensing re-

trievals in past studies. However, no satisfying physical

basis has yet been provided for why any of these func-

tions characterize PSDs. The use of the principle of

maximum entropy (MaxEnt) to find analytical forms of

PSDs was examined here, building upon its use in prior

studies (Zhang and Zheng 1994; Liu et al. 1995; Yano

et al. 2016). The main findings of this study are sum-

marized as follows:

1) Thedefinition of relative entropySr 52
Ð ‘
0
P(x) ln[P(x)=

I(x)] dx, which is invariant under coordinate trans-

formations, was used to resolve an inconsistency

in previous studies. The previous use of Gibbs–

Shannon entropy allowed different PSDs to be de-

rived using the same constraint by simply using a

different state variable x.

2) The definition of relative entropy used in this study

to determine a physical basis for a cloud PSD re-

quires an assumption about an invariant measure

I(D), which is obtained from a physical understand-

ing of the system studied. Here, it was shown that

I(D) can be obtained if invariance regarding group

transformation is assumed.

3) Assuming that the microscopic state variables that

characterize the properties of cloud particles (e.g.,

particle maximum dimension, area, mass, and fall

speed) are related to each other through power laws,

FIG. 2. As in Fig. 1, but for ice PSDs.
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it was shown that if one constraint related to any state

variable was assumed, a four-parameter generalized

gamma distribution can be derived. The state vari-

able that needs to be used as a constraint is not yet

well determined.

4) It was shown that if one state variable follows the

generalized gamma distribution, all state variables

having power-law relations with the state variable

must also follow the generalized gamma distribution.

5) Directly fitting in situ observed PSDs using data

obtained from optical array probes (OAPs) gener-

ates reasonable fits to the observed PSDs for all

the analytical forms of PSD, even though the fit of

generalized gamma distribution is slightly better.

Because of the discrete nature of observed PSDs

and large uncertainties for OAPs, parameters de-

rived by directly fitting have large uncertainties.

Although the MaxEnt approach provides a physical

basis for the form of the generalized four-parameter

gamma distribution, it does not determine the values of

parameters (N0, m, l, and b). These can only be de-

termined using observational datasets. Among the four

parameters, b is particularly interesting, since it implic-

itly implies what the constraint for the system is. Yano

et al. (2016) provide a good approach to examine the

assumptions of constraint (and therefore the value of b)

using observational data.

It should be noted that the generalized gamma distri-

bution is derived when only one constraint of the power

function of particle dimension is used. It is possible

that more than one constraint exists or that the con-

straint functions fk(D) cannot be represented as power

laws. Either way, the more general form of cloud PSD

[Eq. (26)] can be used in such circumstances. The full

potential of the MaxEnt for cloud physics applications

will be realized after more understanding of the physical

systems is gained. The development of idealized models

to simulate the evolution of cloud particles can also

provide another perspective, from which the application

of MaxEnt may provide more theoretical basis on the

appropriate constraint for the system that should be used.
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APPENDIX

List of Variables and Their Definitions

The variables used in this study are defined and

summarized below.

a Prefactor of m–D relations

b Power factor of m–D relations

g(s, x) Lower incomplete gamma function

G(x) Gamma function

k Scale factor between two lengths in

two clouds

k0 Lower limit of k

k1 Scale factor between two volumes in

two clouds

k Scale factor between two coordinate

systems

l The slope parameter in generalized

gamma distribution in Eq. (37)

l1 The Lagrange multiplier for the first

constraint

l1 The Lagrange multiplier relating to

l1 by l1 5al1

~l1 The Lagrange multiplier relating to

l1 by l1 5 (a/b)l1

lk The Lagrange multiplier for the kth

constraint

m The shape parameter in generalized

gamma distribution in Eq. (37)

r Particle density

x2 The measure of goodness for a fit in

chi-square statistic

a Prefactor of a general power-law

relations

A The projected area of a cloud particle

b Power factor of a general power-law

relation in generalized gamma

distribution in Eq. (37)

C The constant that relates to l1 through

C5 C0 exp(2l0) in Eq. (10)

C0 The constant in Eq. (10)

C1 Constant in Eq. (18)

C1 Constant in Eq. (19)
~C1 Constant in Eq. (22)

D The maximum dimension of a cloud

particle

e Euler’s number, which equals

approximately 2.71 828

Ei The ith kinetic energy state

E Total kinetic energy of the particle

system

fA(x) The scaled invariantmeasure for IA(x)
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fB(x) The scaled invariant measure for IB(x)

fk(x) The kth constraint as a function of x

Fk The expected value of fk(x)

IWC Ice water content

I(x) The invariant measure

IA(x) The invariant measure for cloud A

IB(x) The invariant measure for cloud B

IR(x) The invariant measure for coordinate

system R

IS(x) The invariant measure for coordinate

system S

k Constraint number

L(x,l1,l2,. . ., ln) Lagrangian function

LWC Liquid water content

m The mass of a cloud particle

n Number of energy state in the ideal

gas system

nc The number of constraints

nm The number of moments used for

fitting

Mobs,i The ith moment of the observed PSD

Mfit,i The ith moment of the fit PSD

N Total number of ideal gas molecules

N0 Generalized gamma distribution pa-

rameter in Eq. (37)

N(D) Number distribution function over size

N(m) Number distribution function over

mass

Ni Total number of ideal gas molecules in

energy state Ei

Nt Total number concentration

Pi Probability of ideal gas particles in

energy state Ei

P(x) Probability of x state

S Gibbs–Shannon entropy

SB Boltzmann entropy

Sr Relative entropy

TWC Total water content

n Cloud particle fall speed

W The multiplicity representing the num-

ber of microscopic configurations

x A random state variable that

describes the cloud particle

Z(l1, l2, . . . , ln) Partition function
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